跳到内容

GCXS

基类:SparseArray, NDArrayOperatorsMixin

稀疏多维数组。

这以 GCXS 格式存储,它是 用于 n 维稀疏数组的高效存储方案:GCRS/GCCS 中 GCRS/GCCS 格式的推广。GCXS 推广了 CRS/CCS 稀疏矩阵格式。

对于 ndim == 2 的数组,GCXS 与 CSR/CSC 相同。对于 ndim > 2 的数组,任何轴的组合都可以被压缩,从而显著减少存储空间。

GCXS 由 3 个数组组成。这 3 个数组是 RO、CO 和 VL。数组 RO 的第一个元素是整数 0,随后的元素是 GCRS 中每行、GCCS 中每列的累积非零元素数量。CO 存储 GCRS 中每行、GCCS 中每列的非零元素的列索引。VL 存储非零数组元素的值。

GCRS/GCCS 优于传统 (CRS/CCS) 的优势已通过理论分析和实验结果证明,并已在链接的研究论文中概述。

参数

名称 类型 描述 默认值
arg tuple(data, indices, indptr)

一个元组,包含数组非零值的数据、索引和索引指针数组。

必需
shape tuple[int](ndim)

数组的形状。

compressed_axes Iterable[int]

要压缩的轴。

prune bool_

一个标志,指示是否应修剪数据数组中存在的任何填充值。

False
fill_value

此数组的填充值。

属性

名称 类型 描述
数据 ndarray(nnz)

一个数组,包含与 indices 对应的非零值。

indices ndarray(nnz)

一个数组,包含非压缩维度上每个非零元素的坐标。

indptr ndarray

一个数组,包含沿压缩维度非零值的累积和。

shape tuple[int](ndim)

此数组的维度。

另请参阅

sparse.DOK : 一个主要只写的稀疏数组。

源代码在 sparse/numba_backend/_compressed/compressed.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
class GCXS(SparseArray, NDArrayOperatorsMixin):
    r"""
    A sparse multidimensional array.

    This is stored in GCXS format, a generalization of the GCRS/GCCS formats
    from [Efficient storage scheme for n-dimensional sparse array: GCRS/GCCS](
    https://ieeexplore.ieee.org/document/7237032). GCXS generalizes the CRS/CCS
    sparse matrix formats.

    For arrays with ndim == 2, GCXS is the same CSR/CSC.
    For arrays with ndim >2, any combination of axes can be compressed,
    significantly reducing storage.

    GCXS consists of 3 arrays. Let the 3 arrays be RO, CO and VL. The first element
    of array RO is the integer 0 and later elements are the number of
    cumulative non-zero elements in each row for GCRS, column for
    GCCS. CO stores column indexes of non-zero elements at each row for GCRS, column for GCCS.
    VL stores the values of the non-zero array elements.

    The superiority of the GCRS/GCCS over traditional (CRS/CCS) is shown by both
    theoretical analysis and experimental results, outlined in the linked research paper.

    Parameters
    ----------
    arg : tuple (data, indices, indptr)
        A tuple of arrays holding the data, indices, and
        index pointers for the nonzero values of the array.
    shape : tuple[int] (COO.ndim,)
        The shape of the array.
    compressed_axes : Iterable[int]
        The axes to compress.
    prune : bool, optional
        A flag indicating whether or not we should prune any fill-values present in
        the data array.
    fill_value: scalar, optional
        The fill value for this array.

    Attributes
    ----------
    data : numpy.ndarray (nnz,)
        An array holding the nonzero values corresponding to `indices`.
    indices : numpy.ndarray (nnz,)
        An array holding the coordinates of every nonzero element along uncompressed dimensions.
    indptr : numpy.ndarray
        An array holding the cumulative sums of the nonzeros along the compressed dimensions.
    shape : tuple[int] (ndim,)
        The dimensions of this array.

    See Also
    --------
    [`sparse.DOK`][] : A mostly write-only sparse array.
    """

    __array_priority__ = 12

    def __init__(
        self,
        arg,
        shape=None,
        compressed_axes=None,
        prune=False,
        fill_value=None,
        idx_dtype=None,
    ):
        from .._common import _is_scipy_sparse_obj

        if _is_scipy_sparse_obj(arg):
            arg = self.from_scipy_sparse(arg)

        if isinstance(arg, np.ndarray):
            (arg, shape, compressed_axes, fill_value) = _from_coo(COO(arg), compressed_axes)

        elif isinstance(arg, COO):
            (arg, shape, compressed_axes, fill_value) = _from_coo(arg, compressed_axes, idx_dtype)

        elif isinstance(arg, GCXS):
            if compressed_axes is not None and arg.compressed_axes != compressed_axes:
                arg = arg.change_compressed_axes(compressed_axes)
            (arg, shape, compressed_axes, fill_value) = (
                (arg.data, arg.indices, arg.indptr),
                arg.shape,
                arg.compressed_axes,
                arg.fill_value,
            )

        if shape is None:
            raise ValueError("missing `shape` argument")

        check_compressed_axes(len(shape), compressed_axes)

        if len(shape) == 1:
            compressed_axes = None

        self.data, self.indices, self.indptr = arg

        if self.data.ndim != 1:
            raise ValueError("data must be a scalar or 1-dimensional.")

        self.shape = shape

        if fill_value is None:
            fill_value = _zero_of_dtype(self.data.dtype)

        self._compressed_axes = tuple(compressed_axes) if isinstance(compressed_axes, Iterable) else None
        self.fill_value = self.data.dtype.type(fill_value)

        if prune:
            self._prune()

    def copy(self, deep=True):
        """Return a copy of the array.

        Parameters
        ----------
        deep : boolean, optional
            If True (default), the internal coords and data arrays are also
            copied. Set to ``False`` to only make a shallow copy.
        """
        return _copy.deepcopy(self) if deep else _copy.copy(self)

    @classmethod
    def from_numpy(cls, x, compressed_axes=None, fill_value=None, idx_dtype=None):
        coo = COO.from_numpy(x, fill_value=fill_value, idx_dtype=idx_dtype)
        return cls.from_coo(coo, compressed_axes, idx_dtype)

    @classmethod
    def from_coo(cls, x, compressed_axes=None, idx_dtype=None):
        (arg, shape, compressed_axes, fill_value) = _from_coo(x, compressed_axes, idx_dtype)
        return cls(arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value)

    @classmethod
    def from_scipy_sparse(cls, x, /, *, fill_value=None):
        is_csc = x.format == "csc"
        ca = (1,) if is_csc else (0,)
        if not is_csc:
            x = x.asformat("csr")
        if not x.has_canonical_format:
            x.eliminate_zeros()
            x.sum_duplicates()
        return cls((x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=ca, fill_value=fill_value)

    @classmethod
    def from_iter(cls, x, shape=None, compressed_axes=None, fill_value=None, idx_dtype=None):
        return cls.from_coo(
            COO.from_iter(x, shape, fill_value),
            compressed_axes,
            idx_dtype,
        )

    @property
    def dtype(self):
        """
        The datatype of this array.

        Returns
        -------
        numpy.dtype
            The datatype of this array.

        See Also
        --------
        - [`numpy.ndarray.dtype`][] : Numpy equivalent property.
        - [`scipy.sparse.csr_matrix.dtype`][] : Scipy equivalent property.
        """
        return self.data.dtype

    @property
    def nnz(self):
        """
        The number of nonzero elements in this array.

        Returns
        -------
        int
            The number of nonzero elements in this array.

        See Also
        --------
        - [`sparse.COO.nnz`][] : Equivalent [`sparse.COO`][] array property.
        - [`sparse.DOK.nnz`][] : Equivalent [`sparse.DOK`][] array property.
        - [`numpy.count_nonzero`][] : A similar Numpy function.
        - [`scipy.sparse.coo_matrix.nnz`][] : The Scipy equivalent property.
        """
        return self.data.shape[0]

    @property
    def format(self):
        """
        The storage format of this array.

        Returns
        -------
        str
            The storage format of this array.

        See Also
        -------
        [`scipy.sparse.dok_matrix.format`][] : The Scipy equivalent property.

        Examples
        -------
        >>> import sparse
        >>> s = sparse.random((5, 5), density=0.2, format="dok")
        >>> s.format
        'dok'
        >>> t = sparse.random((5, 5), density=0.2, format="coo")
        >>> t.format
        'coo'
        """
        return "gcxs"

    @property
    def nbytes(self):
        """
        The number of bytes taken up by this object. Note that for small arrays,
        this may undercount the number of bytes due to the large constant overhead.

        Returns
        -------
        int
            The approximate bytes of memory taken by this object.

        See Also
        --------
        [`numpy.ndarray.nbytes`][] : The equivalent Numpy property.
        """
        return self.data.nbytes + self.indices.nbytes + self.indptr.nbytes

    @property
    def _axis_order(self):
        axis_order = list(self.compressed_axes)
        axis_order.extend(np.setdiff1d(np.arange(len(self.shape)), self.compressed_axes))
        return axis_order

    @property
    def _axisptr(self):
        # array location where the uncompressed dimensions start
        return len(self.compressed_axes)

    @property
    def _compressed_shape(self):
        row_size = np.prod(self._reordered_shape[: self._axisptr])
        col_size = np.prod(self._reordered_shape[self._axisptr :])
        return (row_size, col_size)

    @property
    def _reordered_shape(self):
        return tuple(self.shape[i] for i in self._axis_order)

    @property
    def T(self):
        return self.transpose()

    @property
    def mT(self):
        if self.ndim < 2:
            raise ValueError("Cannot compute matrix transpose if `ndim < 2`.")

        axis = list(range(self.ndim))
        axis[-1], axis[-2] = axis[-2], axis[-1]

        return self.transpose(axis)

    def __str__(self):
        summary = (
            f"<GCXS: shape={self.shape}, dtype={self.dtype}, nnz={self.nnz}, fill_value={self.fill_value}, "
            f"compressed_axes={self.compressed_axes}>"
        )
        return self._str_impl(summary)

    __repr__ = __str__

    __getitem__ = getitem

    def _reduce_calc(self, method, axis, keepdims=False, **kwargs):
        if axis[0] is None or np.array_equal(axis, np.arange(self.ndim, dtype=np.intp)):
            x = self.flatten().tocoo()
            out = x.reduce(method, axis=None, keepdims=keepdims, **kwargs)
            if keepdims:
                return (out.reshape(np.ones(self.ndim, dtype=np.intp)),)
            return (out,)

        r = np.arange(self.ndim, dtype=np.intp)
        compressed_axes = [a for a in r if a not in set(axis)]
        x = self.change_compressed_axes(compressed_axes)
        idx = np.diff(x.indptr) != 0
        indptr = x.indptr[:-1][idx]
        indices = (np.arange(x._compressed_shape[0], dtype=self.indptr.dtype))[idx]
        data = method.reduceat(x.data, indptr, **kwargs)
        counts = x.indptr[1:][idx] - x.indptr[:-1][idx]
        arr_attrs = (x, compressed_axes, indices)
        n_cols = x._compressed_shape[1]
        return (data, counts, axis, n_cols, arr_attrs)

    def _reduce_return(self, data, arr_attrs, result_fill_value):
        x, compressed_axes, indices = arr_attrs
        # prune data
        mask = ~equivalent(data, result_fill_value)
        data = data[mask]
        indices = indices[mask]
        out = GCXS(
            (data, indices, []),
            shape=(x._compressed_shape[0],),
            fill_value=result_fill_value,
            compressed_axes=None,
        )
        return out.reshape(tuple(self.shape[d] for d in compressed_axes))

    def change_compressed_axes(self, new_compressed_axes):
        """
        Returns a new array with specified compressed axes. This operation is similar to converting
        a scipy.sparse.csc_matrix to a scipy.sparse.csr_matrix.

        Returns
        -------
        GCXS
            A new instance of the input array with compression along the specified dimensions.
        """
        if new_compressed_axes == self.compressed_axes:
            return self

        if self.ndim == 1:
            raise NotImplementedError("no axes to compress for 1d array")

        new_compressed_axes = tuple(
            normalize_axis(new_compressed_axes[i], self.ndim) for i in range(len(new_compressed_axes))
        )

        if new_compressed_axes == self.compressed_axes:
            return self

        if len(new_compressed_axes) >= len(self.shape):
            raise ValueError("cannot compress all axes")
        if len(set(new_compressed_axes)) != len(new_compressed_axes):
            raise ValueError("repeated axis in compressed_axes")

        arg = _transpose(self, self.shape, np.arange(self.ndim), new_compressed_axes)

        return GCXS(
            arg,
            shape=self.shape,
            compressed_axes=new_compressed_axes,
            fill_value=self.fill_value,
        )

    def tocoo(self):
        """
        Convert this [`sparse.GCXS`][] array to a [`sparse.COO`][].

        Returns
        -------
        sparse.COO
            The converted COO array.
        """
        if self.ndim == 0:
            return COO(
                np.array([]),
                self.data,
                shape=self.shape,
                fill_value=self.fill_value,
            )
        if self.ndim == 1:
            return COO(
                self.indices[None, :],
                self.data,
                shape=self.shape,
                fill_value=self.fill_value,
            )
        uncompressed = uncompress_dimension(self.indptr)
        coords = np.vstack((uncompressed, self.indices))
        order = np.argsort(self._axis_order)
        return (
            COO(
                coords,
                self.data,
                shape=self._compressed_shape,
                fill_value=self.fill_value,
            )
            .reshape(self._reordered_shape)
            .transpose(order)
        )

    def todense(self):
        """
        Convert this [`sparse.GCXS`][] array to a dense [`numpy.ndarray`][]. Note that
        this may take a large amount of memory if the [`sparse.GCXS`][] object's `shape`
        is large.

        Returns
        -------
        numpy.ndarray
            The converted dense array.

        See Also
        --------
        - [`sparse.DOK.todense`][] : Equivalent [`sparse.DOK`][] array method.
        - [`sparse.COO.todense`][] : Equivalent [`sparse.COO`][] array method.
        - [`scipy.sparse.coo_matrix.todense`][] : Equivalent Scipy method.

        """
        if self.compressed_axes is None:
            out = np.full(self.shape, self.fill_value, self.dtype)
            if len(self.indices) != 0:
                out[self.indices] = self.data
            else:
                if len(self.data) != 0:
                    out[()] = self.data[0]
            return out
        return self.tocoo().todense()

    def todok(self):
        from .. import DOK

        return DOK.from_coo(self.tocoo())  # probably a temporary solution

    def to_scipy_sparse(self, accept_fv=None):
        """
        Converts this [`sparse.GCXS`][] object into a [`scipy.sparse.csr_matrix`][] or [`scipy.sparse.csc_matrix`][].

        Parameters
        ----------
        accept_fv : scalar or list of scalar, optional
            The list of accepted fill-values. The default accepts only zero.

        Returns
        -------
        scipy.sparse.csr_matrix or scipy.sparse.csc_matrix
            The converted Scipy sparse matrix.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.
        ValueError
            If all the array doesn't zero fill-values.
        """
        import scipy.sparse

        check_fill_value(self, accept_fv=accept_fv)
        if self.ndim != 2:
            raise ValueError("Can only convert a 2-dimensional array to a Scipy sparse matrix.")

        if 0 in self.compressed_axes:
            return scipy.sparse.csr_matrix((self.data, self.indices, self.indptr), shape=self.shape)

        return scipy.sparse.csc_matrix((self.data, self.indices, self.indptr), shape=self.shape)

    def asformat(self, format, **kwargs):
        """
        Convert this sparse array to a given format.
        Parameters
        ----------
        format : str
            A format string.

        Returns
        -------
        out : SparseArray
            The converted array.

        Raises
        ------
        NotImplementedError
            If the format isn't supported.
        """
        from .._utils import convert_format

        format = convert_format(format)
        ret = None

        if format == "coo":
            ret = self.tocoo()
        elif format == "dok":
            ret = self.todok()
        elif format == "csr":
            ret = CSR(self)
        elif format == "csc":
            ret = CSC(self)
        elif format == "gcxs":
            compressed_axes = kwargs.pop("compressed_axes", self.compressed_axes)
            return self.change_compressed_axes(compressed_axes)

        if len(kwargs) != 0:
            raise TypeError(f"Invalid keyword arguments provided: {kwargs}")

        if ret is None:
            raise NotImplementedError(f"The given format is not supported: {format}")

        return ret

    def maybe_densify(self, max_size=1000, min_density=0.25):
        """
        Converts this [`sparse.GCXS`][] array to a [`numpy.ndarray`][] if not too
        costly.

        Parameters
        ----------
        max_size : int
            Maximum number of elements in output
        min_density : float
            Minimum density of output

        Returns
        -------
        numpy.ndarray
            The dense array.

        See Also
        --------
        - [sparse.GCXS.todense][]: Converts to Numpy function without checking the cost.
        - [sparse.COO.maybe_densify][]: The equivalent COO function.

        Raises
        -------
        ValueError
            If the returned array would be too large.
        """

        if self.size > max_size and self.density < min_density:
            raise ValueError("Operation would require converting large sparse array to dense")

        return self.todense()

    def flatten(self, order="C"):
        """
        Returns a new [`sparse.GCXS`][] array that is a flattened version of this array.

        Returns
        -------
        GCXS
            The flattened output array.

        Notes
        -----
        The `order` parameter is provided just for compatibility with
        Numpy and isn't actually supported.
        """
        if order not in {"C", None}:
            raise NotImplementedError("The `order` parameter is not supported.")

        return self.reshape(-1)

    def reshape(self, shape, order="C", compressed_axes=None):
        """
        Returns a new [`sparse.GCXS`][] array that is a reshaped version of this array.

        Parameters
        ----------
        shape : tuple[int]
            The desired shape of the output array.
        compressed_axes : Iterable[int], optional
            The axes to compress to store the array. Finds the most efficient storage
            by default.

        Returns
        -------
        GCXS
            The reshaped output array.

        See Also
        --------
        - [`numpy.ndarray.reshape`][] : The equivalent Numpy function.
        - [sparse.COO.reshape][] : The equivalent COO function.

        Notes
        -----
        The `order` parameter is provided just for compatibility with
        Numpy and isn't actually supported.

        """
        shape = tuple(shape) if isinstance(shape, Iterable) else (shape,)
        if order not in {"C", None}:
            raise NotImplementedError("The 'order' parameter is not supported")
        if any(d == -1 for d in shape):
            extra = int(self.size / np.prod([d for d in shape if d != -1]))
            shape = tuple([d if d != -1 else extra for d in shape])

        if self.shape == shape:
            return self

        if self.size != reduce(operator.mul, shape, 1):
            raise ValueError(f"cannot reshape array of size {self.size} into shape {shape}")
        if len(shape) == 0:
            return self.tocoo().reshape(shape).asformat("gcxs")

        if compressed_axes is None:
            if len(shape) == self.ndim:
                compressed_axes = self.compressed_axes
            elif len(shape) == 1:
                compressed_axes = None
            else:
                compressed_axes = (np.argmin(shape),)

        if self.ndim == 1:
            arg = _1d_reshape(self, shape, compressed_axes)
        else:
            arg = _transpose(self, shape, np.arange(self.ndim), compressed_axes)
        return GCXS(
            arg,
            shape=tuple(shape),
            compressed_axes=compressed_axes,
            fill_value=self.fill_value,
        )

    @property
    def compressed_axes(self):
        return self._compressed_axes

    def transpose(self, axes=None, compressed_axes=None):
        """
        Returns a new array which has the order of the axes switched.

        Parameters
        ----------
        axes : Iterable[int], optional
            The new order of the axes compared to the previous one. Reverses the axes
            by default.
        compressed_axes : Iterable[int], optional
            The axes to compress to store the array. Finds the most efficient storage
            by default.

        Returns
        -------
        GCXS
            The new array with the axes in the desired order.

        See Also
        --------
        - [`sparse.GCXS.T`][] : A quick property to reverse the order of the axes.
        - [`numpy.ndarray.transpose`][] : Numpy equivalent function.
        """
        if axes is None:
            axes = list(reversed(range(self.ndim)))

        # Normalize all axes indices to positive values
        axes = normalize_axis(axes, self.ndim)

        if len(np.unique(axes)) < len(axes):
            raise ValueError("repeated axis in transpose")

        if not len(axes) == self.ndim:
            raise ValueError("axes don't match array")

        axes = tuple(axes)

        if axes == tuple(range(self.ndim)):
            return self

        if self.ndim == 2:
            return self._2d_transpose()

        shape = tuple(self.shape[ax] for ax in axes)

        if compressed_axes is None:
            compressed_axes = (np.argmin(shape),)
        arg = _transpose(self, shape, axes, compressed_axes, transpose=True)
        return GCXS(
            arg,
            shape=shape,
            compressed_axes=compressed_axes,
            fill_value=self.fill_value,
        )

    def _2d_transpose(self):
        """
        A function for performing constant-time transposes on 2d GCXS arrays.

        Returns
        -------
        GCXS
            The new transposed array with the opposite compressed axes as the input.

        See Also
        --------
        scipy.sparse.csr_matrix.transpose : Scipy equivalent function.
        scipy.sparse.csc_matrix.transpose : Scipy equivalent function.
        numpy.ndarray.transpose : Numpy equivalent function.
        """
        if self.ndim != 2:
            raise ValueError(f"cannot perform 2d transpose on array with dimension {self.ndim}")

        compressed_axes = [(self.compressed_axes[0] + 1) % 2]
        shape = self.shape[::-1]
        return GCXS(
            (self.data, self.indices, self.indptr),
            shape=shape,
            compressed_axes=compressed_axes,
            fill_value=self.fill_value,
        )

    def dot(self, other):
        """
        Performs the equivalent of `x.dot(y)` for [`sparse.GCXS`][].

        Parameters
        ----------
        other : Union[GCXS, COO, numpy.ndarray, scipy.sparse.spmatrix]
            The second operand of the dot product operation.

        Returns
        -------
        {GCXS, numpy.ndarray}
            The result of the dot product. If the result turns out to be dense,
            then a dense array is returned, otherwise, a sparse array.

        Raises
        ------
        ValueError
            If all arguments don't have zero fill-values.

        See Also
        --------
        - [`sparse.dot`][] : Equivalent function for two arguments.
        - [`numpy.dot`][] : Numpy equivalent function.
        - [`scipy.sparse.coo_matrix.dot`][] : Scipy equivalent function.
        """
        from .._common import dot

        return dot(self, other)

    def __matmul__(self, other):
        from .._common import matmul

        try:
            return matmul(self, other)
        except NotImplementedError:
            return NotImplemented

    def __rmatmul__(self, other):
        from .._common import matmul

        try:
            return matmul(other, self)
        except NotImplementedError:
            return NotImplemented

    def _prune(self):
        """
        Prunes data so that if any fill-values are present, they are removed
        from both indices and data.

        Examples
        --------
        >>> coords = np.array([[0, 1, 2, 3]])
        >>> data = np.array([1, 0, 1, 2])
        >>> s = COO(coords, data, shape=(4,)).asformat("gcxs")
        >>> s._prune()
        >>> s.nnz
        3
        """
        mask = ~equivalent(self.data, self.fill_value)
        self.data = self.data[mask]
        if len(self.indptr):
            coords = np.stack((uncompress_dimension(self.indptr), self.indices))
            coords = coords[:, mask]
            self.indices = coords[1]
            row_size = self._compressed_shape[0]
            indptr = np.empty(row_size + 1, dtype=self.indptr.dtype)
            indptr[0] = 0
            np.cumsum(np.bincount(coords[0], minlength=row_size), out=indptr[1:])
            self.indptr = indptr
        else:
            self.indices = self.indices[mask]

    def isinf(self):
        return self.tocoo().isinf().asformat("gcxs", compressed_axes=self.compressed_axes)

    def isnan(self):
        return self.tocoo().isnan().asformat("gcxs", compressed_axes=self.compressed_axes)

属性

device 属性

ndim 属性

此数组的维度数。

返回

类型 描述
int

此数组的维度数。

另请参阅

示例

>>> from sparse import COO
>>> import numpy as np
>>> x = np.random.rand(1, 2, 3, 1, 2)
>>> s = COO.from_numpy(x)
>>> s.ndim
5
>>> s.ndim == x.ndim
True

size 属性

此数组中所有元素(包括零)的数量。

返回

类型 描述
int

元素数量。

另请参阅

numpy.ndarray.size : Numpy 等效属性。

示例

>>> from sparse import COO
>>> import numpy as np
>>> x = np.zeros((10, 10))
>>> s = COO.from_numpy(x)
>>> s.size
100

density 属性

此数组中非零元素与所有元素的比率。

返回

类型 描述
float

非零元素与所有元素的比率。

另请参阅

示例

>>> import numpy as np
>>> from sparse import COO
>>> x = np.zeros((8, 8))
>>> x[0, :] = 1
>>> s = COO.from_numpy(x)
>>> s.density
0.125

amax = max 类属性 实例属性

amin = min 类属性 实例属性

round_ = round 类属性 实例属性

real 属性

数组的实部。

示例

>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.real.todense()
array([1., 0.])
>>> x.real.dtype
dtype('float64')

返回

名称 类型 描述
out SparseArray

数组元素的实部。如果数组 dtype 是实数,则输出使用数组的 dtype。如果数组是复数,则输出 dtype 为浮点数。

另请参阅

imag 属性

数组的虚部。

示例

>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.imag.todense()
array([0., 1.])
>>> x.imag.dtype
dtype('float64')

返回

名称 类型 描述
out SparseArray

数组元素的虚部。如果数组 dtype 是实数,则输出使用数组的 dtype。如果数组是复数,则输出 dtype 为浮点数。

另请参阅

shape = shape 实例属性

fill_value = self.data.dtype.type(fill_value) 实例属性

dtype 属性

此数组的数据类型。

返回

类型 描述
dtype

此数组的数据类型。

另请参阅

nnz 属性

此数组中非零元素的数量。

返回

类型 描述
int

此数组中非零元素的数量。

另请参阅

format 属性

此数组的存储格式。

返回

类型 描述
str

此数组的存储格式。

另请参阅

scipy.sparse.dok_matrix.format : Scipy 等效属性。

示例

>>> import sparse
>>> s = sparse.random((5, 5), density=0.2, format="dok")
>>> s.format
'dok'
>>> t = sparse.random((5, 5), density=0.2, format="coo")
>>> t.format
'coo'

nbytes 属性

此对象占用的字节数。请注意,对于小型数组,由于恒定开销较大,此值可能会低估字节数。

返回

类型 描述
int

此对象占用的近似内存字节数。

另请参阅

numpy.ndarray.nbytes : 等效的 Numpy 属性。

T 属性

mT 属性

compressed_axes 属性

函数

to_device(device, /, *, stream=None)

源代码在 sparse/numba_backend/_sparse_array.py
55
56
57
58
59
def to_device(self, device, /, *, stream=None):
    if device != "cpu":
        raise ValueError("Only `device='cpu'` is supported.")

    return self

reduce(method, axis=(0,), keepdims=False, **kwargs)

对此数组执行归约操作。

参数

名称 类型 描述 默认值
method ufunc

用于执行归约的方法。

必需
axis Union[int, Iterable[int]]

执行归约的轴。默认使用所有轴。

(0,)
keepdims bool_

是否保留原始数组的维度。

False
**kwargs dict

传递给归约操作的任何额外参数。

{}
另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def reduce(self, method, axis=(0,), keepdims=False, **kwargs):
    """
    Performs a reduction operation on this array.

    Parameters
    ----------
    method : numpy.ufunc
        The method to use for performing the reduction.
    axis : Union[int, Iterable[int]], optional
        The axes along which to perform the reduction. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    **kwargs : dict
        Any extra arguments to pass to the reduction operation.

    See Also
    --------
    - [`numpy.ufunc.reduce`][] : A similar Numpy method.
    - [`sparse.COO.reduce`][] : This method implemented on COO arrays.
    - [`sparse.GCXS.reduce`][] : This method implemented on GCXS arrays.
    """
    axis = normalize_axis(axis, self.ndim)
    zero_reduce_result = method.reduce([self.fill_value, self.fill_value], **kwargs)
    reduce_super_ufunc = _reduce_super_ufunc.get(method)
    if not equivalent(zero_reduce_result, self.fill_value) and reduce_super_ufunc is None:
        raise ValueError(f"Performing this reduction operation would produce a dense result: {method!s}")

    if not isinstance(axis, tuple):
        axis = (axis,)
    out = self._reduce_calc(method, axis, keepdims, **kwargs)
    if len(out) == 1:
        return out[0]
    data, counts, axis, n_cols, arr_attrs = out
    result_fill_value = self.fill_value
    if reduce_super_ufunc is None:
        missing_counts = counts != n_cols
        data[missing_counts] = method(data[missing_counts], self.fill_value, **kwargs)
    else:
        data = method(
            data,
            reduce_super_ufunc(self.fill_value, n_cols - counts),
        ).astype(data.dtype)
        result_fill_value = reduce_super_ufunc(self.fill_value, n_cols)

    out = self._reduce_return(data, arr_attrs, result_fill_value)

    if keepdims:
        shape = list(self.shape)
        for ax in axis:
            shape[ax] = 1
        out = out.reshape(shape)

    if out.ndim == 0:
        return out[()]

    return out

sum(axis=None, keepdims=False, dtype=None, out=None)

沿给定轴执行求和操作。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

进行求和的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False
dtype dtype

输出数组的数据类型。

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def sum(self, axis=None, keepdims=False, dtype=None, out=None):
    """
    Performs a sum operation along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to sum. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    - [`numpy.sum`][] : Equivalent numpy function.
    - [`scipy.sparse.coo_matrix.sum`][] : Equivalent Scipy function.
    """
    return np.add.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)

max(axis=None, keepdims=False, out=None)

沿给定轴取最大值。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

取最大值的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False
out dtype

输出数组的数据类型。

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def max(self, axis=None, keepdims=False, out=None):
    """
    Maximize along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to maximize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    out : numpy.dtype
        The data type of the output array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    - [`numpy.max`][] : Equivalent numpy function.
    - [`scipy.sparse.coo_matrix.max`][] : Equivalent Scipy function.
    """
    return np.maximum.reduce(self, out=out, axis=axis, keepdims=keepdims)

any(axis=None, keepdims=False, out=None)

检查数组中是否有任何值为 True。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

取最小值的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅

numpy.any : 等效的 numpy 函数。

源代码在 sparse/numba_backend/_sparse_array.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def any(self, axis=None, keepdims=False, out=None):
    """
    See if any values along array are ``True``. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to minimize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    [`numpy.any`][] : Equivalent numpy function.
    """
    return np.logical_or.reduce(self, out=out, axis=axis, keepdims=keepdims)

all(axis=None, keepdims=False, out=None)

检查数组中所有值是否都为 True。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

取最小值的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅

numpy.all : 等效的 numpy 函数。

源代码在 sparse/numba_backend/_sparse_array.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
def all(self, axis=None, keepdims=False, out=None):
    """
    See if all values in an array are ``True``. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to minimize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    [`numpy.all`][] : Equivalent numpy function.
    """
    return np.logical_and.reduce(self, out=out, axis=axis, keepdims=keepdims)

min(axis=None, keepdims=False, out=None)

沿给定轴取最小值。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

取最小值的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False
out dtype

输出数组的数据类型。

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
def min(self, axis=None, keepdims=False, out=None):
    """
    Minimize along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to minimize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    out : numpy.dtype
        The data type of the output array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    - [`numpy.min`][] : Equivalent numpy function.
    - [`scipy.sparse.coo_matrix.min`][] : Equivalent Scipy function.
    """
    return np.minimum.reduce(self, out=out, axis=axis, keepdims=keepdims)

prod(axis=None, keepdims=False, dtype=None, out=None)

沿给定轴执行乘积操作。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

进行乘法的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False
dtype dtype

输出数组的数据类型。

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅

numpy.prod : 等效的 numpy 函数。

源代码在 sparse/numba_backend/_sparse_array.py
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def prod(self, axis=None, keepdims=False, dtype=None, out=None):
    """
    Performs a product operation along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to multiply. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    [`numpy.prod`][] : Equivalent numpy function.
    """
    return np.multiply.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)

round(decimals=0, out=None)

均匀地四舍五入到给定的小数位数。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
def round(self, decimals=0, out=None):
    """
    Evenly round to the given number of decimals.

    See Also
    --------
    - [`numpy.round`][] :
        NumPy equivalent ufunc.
    - [`sparse.elemwise`][] :
        Apply an arbitrary element-wise function to one or two
        arguments.
    """
    if out is not None and not isinstance(out, tuple):
        out = (out,)
    return self.__array_ufunc__(np.round, "__call__", self, decimals=decimals, out=out)

clip(min=None, max=None, out=None)

裁剪(限制)数组中的值。

返回一个值限制在 [min, max] 范围内的数组。必须提供 min 或 max 之一。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def clip(self, min=None, max=None, out=None):
    """
    Clip (limit) the values in the array.

    Return an array whose values are limited to ``[min, max]``. One of min
    or max must be given.

    See Also
    --------
    - [sparse.clip][] : For full documentation and more details.
    - [`numpy.clip`][] : Equivalent NumPy function.
    """
    if out is not None and not isinstance(out, tuple):
        out = (out,)
    return self.__array_ufunc__(np.clip, "__call__", self, a_min=min, a_max=max, out=out)

astype(dtype, casting='unsafe', copy=True)

数组的副本,转换为指定类型。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
def astype(self, dtype, casting="unsafe", copy=True):
    """
    Copy of the array, cast to a specified type.

    See Also
    --------
    - [`scipy.sparse.coo_matrix.astype`][] :
        SciPy sparse equivalent function
    - [`numpy.ndarray.astype`][] :
        NumPy equivalent ufunc.
    - [`sparse.elemwise`][] :
        Apply an arbitrary element-wise function to one or two
        arguments.
    """
    # this matches numpy's behavior
    if self.dtype == dtype and not copy:
        return self
    return self.__array_ufunc__(np.ndarray.astype, "__call__", self, dtype=dtype, copy=copy, casting=casting)

mean(axis=None, keepdims=False, dtype=None, out=None)

沿给定轴计算均值。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

计算均值的轴。默认使用所有轴。

keepdims bool_

是否保留原始数组的维度。

False
dtype dtype

输出数组的数据类型。

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅
备注
  • 提供 out 参数仅为了与 Numpy 兼容,实际上并不受支持。

示例

您可以使用 sparse.COO.mean 计算数组沿任意维度的均值。

>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.mean(axis=1)
>>> s2.todense()
array([0.5, 1.5, 0., 0.])

您还可以使用 keepdims 参数在计算均值后保留维度。

>>> s3 = s.mean(axis=0, keepdims=True)
>>> s3.shape
(1, 4)

如果需要,可以传入输出数据类型。

>>> s4 = s.mean(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')

默认情况下,这将数组归约为一个数字,计算沿所有轴的均值。

>>> s.mean()
np.float64(0.5)
源代码在 sparse/numba_backend/_sparse_array.py
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
def mean(self, axis=None, keepdims=False, dtype=None, out=None):
    """
    Compute the mean along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to compute the mean. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    - [`numpy.ndarray.mean`][] : Equivalent numpy method.
    - [`scipy.sparse.coo_matrix.mean`][] : Equivalent Scipy method.

    Notes
    -----
    * The `out` parameter is provided just for compatibility with
      Numpy and isn't actually supported.

    Examples
    --------
    You can use [`sparse.COO.mean`][] to compute the mean of an array across any
    dimension.

    >>> from sparse import COO
    >>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
    >>> s = COO.from_numpy(x)
    >>> s2 = s.mean(axis=1)
    >>> s2.todense()  # doctest: +SKIP
    array([0.5, 1.5, 0., 0.])

    You can also use the `keepdims` argument to keep the dimensions
    after the mean.

    >>> s3 = s.mean(axis=0, keepdims=True)
    >>> s3.shape
    (1, 4)

    You can pass in an output datatype, if needed.

    >>> s4 = s.mean(axis=0, dtype=np.float16)
    >>> s4.dtype
    dtype('float16')

    By default, this reduces the array down to one number, computing the
    mean along all axes.

    >>> s.mean()
    np.float64(0.5)
    """

    if axis is None:
        axis = tuple(range(self.ndim))
    elif not isinstance(axis, tuple):
        axis = (axis,)
    den = reduce(operator.mul, (self.shape[i] for i in axis), 1)

    if dtype is None:
        if issubclass(self.dtype.type, np.integer | np.bool_):
            dtype = inter_dtype = np.dtype("f8")
        else:
            dtype = self.dtype
            inter_dtype = np.dtype("f4") if issubclass(dtype.type, np.float16) else dtype
    else:
        inter_dtype = dtype

    num = self.sum(axis=axis, keepdims=keepdims, dtype=inter_dtype)

    if num.ndim:
        out = np.true_divide(num, den, casting="unsafe")
        return out.astype(dtype) if out.dtype != dtype else out
    return np.divide(num, den, dtype=dtype, out=out)

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

沿给定轴计算方差。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

计算方差的轴。默认使用所有轴。

dtype dtype

输出数据类型。

out SparseArray

写入输出的数组。

ddof int

自由度。

0
keepdims bool_

是否保留原始数组的维度。

False

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅

numpy.ndarray.var : 等效的 numpy 方法。

示例

您可以使用 sparse.COO.var 计算数组沿任意维度的方差。

>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.var(axis=1)
>>> s2.todense()
array([0.6875, 0.1875])

您还可以使用 keepdims 参数在计算方差后保留维度。

>>> s3 = s.var(axis=0, keepdims=True)
>>> s3.shape
(1, 4)

如果需要,可以传入输出数据类型。

>>> s4 = s.var(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')

默认情况下,这将数组归约为一个数字,计算沿所有轴的方差。

>>> s.var()
np.float64(0.5)
源代码在 sparse/numba_backend/_sparse_array.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    """
    Compute the variance along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to compute the variance. Uses all axes by default.
    dtype : numpy.dtype, optional
        The output datatype.
    out : SparseArray, optional
        The array to write the output to.
    ddof : int
        The degrees of freedom.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    [`numpy.ndarray.var`][] : Equivalent numpy method.

    Examples
    --------
    You can use [`sparse.COO.var`][] to compute the variance of an array across any
    dimension.

    >>> from sparse import COO
    >>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
    >>> s = COO.from_numpy(x)
    >>> s2 = s.var(axis=1)
    >>> s2.todense()  # doctest: +SKIP
    array([0.6875, 0.1875])

    You can also use the `keepdims` argument to keep the dimensions
    after the variance.

    >>> s3 = s.var(axis=0, keepdims=True)
    >>> s3.shape
    (1, 4)

    You can pass in an output datatype, if needed.

    >>> s4 = s.var(axis=0, dtype=np.float16)
    >>> s4.dtype
    dtype('float16')

    By default, this reduces the array down to one number, computing the
    variance along all axes.

    >>> s.var()
    np.float64(0.5)
    """
    axis = normalize_axis(axis, self.ndim)

    if axis is None:
        axis = tuple(range(self.ndim))

    if not isinstance(axis, tuple):
        axis = (axis,)

    rcount = reduce(operator.mul, (self.shape[a] for a in axis), 1)
    # Make this warning show up on top.
    if ddof >= rcount:
        warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=1)

    # Cast bool, unsigned int, and int to float64 by default
    if dtype is None and issubclass(self.dtype.type, np.integer | np.bool_):
        dtype = np.dtype("f8")

    arrmean = self.sum(axis, dtype=dtype, keepdims=True)[...]
    np.divide(arrmean, rcount, out=arrmean)
    x = self - arrmean
    if issubclass(self.dtype.type, np.complexfloating):
        x = x.real * x.real + x.imag * x.imag
    else:
        x = np.multiply(x, x, out=x)

    ret = x.sum(axis=axis, dtype=dtype, out=out, keepdims=keepdims)

    # Compute degrees of freedom and make sure it is not negative.
    rcount = max([rcount - ddof, 0])

    ret = ret[...]
    np.divide(ret, rcount, out=ret, casting="unsafe")
    return ret[()]

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

沿给定轴计算标准差。默认使用所有轴。

参数

名称 类型 描述 默认值
axis Union[int, Iterable[int]]

计算标准差的轴。默认使用所有轴。

dtype dtype

输出数据类型。

out SparseArray

写入输出的数组。

ddof int

自由度。

0
keepdims bool_

是否保留原始数组的维度。

False

返回

类型 描述
SparseArray

归约后的稀疏输出数组。

另请参阅

numpy.ndarray.std : 等效的 numpy 方法。

示例

您可以使用 sparse.COO.std 计算数组沿任意维度的标准差。

>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.std(axis=1)
>>> s2.todense()
array([0.8291562, 0.4330127])

您还可以使用 keepdims 参数在计算标准差后保留维度。

>>> s3 = s.std(axis=0, keepdims=True)
>>> s3.shape
(1, 4)

如果需要,可以传入输出数据类型。

>>> s4 = s.std(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')

默认情况下,这将数组归约为一个数字,计算沿所有轴的标准差。

>>> s.std()
0.7071067811865476
源代码在 sparse/numba_backend/_sparse_array.py
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    """
    Compute the standard deviation along the given axes. Uses all axes by default.

    Parameters
    ----------
    axis : Union[int, Iterable[int]], optional
        The axes along which to compute the standard deviation. Uses
        all axes by default.
    dtype : numpy.dtype, optional
        The output datatype.
    out : SparseArray, optional
        The array to write the output to.
    ddof : int
        The degrees of freedom.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.

    Returns
    -------
    SparseArray
        The reduced output sparse array.

    See Also
    --------
    [`numpy.ndarray.std`][] : Equivalent numpy method.

    Examples
    --------
    You can use [`sparse.COO.std`][] to compute the standard deviation of an array
    across any dimension.

    >>> from sparse import COO
    >>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
    >>> s = COO.from_numpy(x)
    >>> s2 = s.std(axis=1)
    >>> s2.todense()  # doctest: +SKIP
    array([0.8291562, 0.4330127])

    You can also use the `keepdims` argument to keep the dimensions
    after the standard deviation.

    >>> s3 = s.std(axis=0, keepdims=True)
    >>> s3.shape
    (1, 4)

    You can pass in an output datatype, if needed.

    >>> s4 = s.std(axis=0, dtype=np.float16)
    >>> s4.dtype
    dtype('float16')

    By default, this reduces the array down to one number, computing the
    standard deviation along all axes.

    >>> s.std()  # doctest: +SKIP
    0.7071067811865476
    """
    ret = self.var(axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims)

    return np.sqrt(ret)

conj()

按元素返回复共轭。

复数的复共轭是通过改变其虚部的符号获得的。

示例

>>> from sparse import COO
>>> x = COO.from_numpy([1 + 2j, 2 - 1j])
>>> res = x.conj()
>>> res.todense()
array([1.-2.j, 2.+1.j])
>>> res.dtype
dtype('complex128')

返回

名称 类型 描述
out SparseArray

复共轭,与输入具有相同的 dtype。

另请参阅
源代码在 sparse/numba_backend/_sparse_array.py
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
def conj(self):
    """Return the complex conjugate, element-wise.

    The complex conjugate of a complex number is obtained by changing the
    sign of its imaginary part.

    Examples
    --------
    >>> from sparse import COO
    >>> x = COO.from_numpy([1 + 2j, 2 - 1j])
    >>> res = x.conj()
    >>> res.todense()  # doctest: +SKIP
    array([1.-2.j, 2.+1.j])
    >>> res.dtype
    dtype('complex128')

    Returns
    -------
    out : SparseArray
        The complex conjugate, with same dtype as the input.

    See Also
    --------
    - [`numpy.ndarray.conj`][] : NumPy equivalent method.
    - [`numpy.conj`][] : NumPy equivalent function.
    """
    return np.conj(self)

copy(deep=True)

返回数组的副本。

参数

名称 类型 描述 默认值
deep 布尔值

如果为 True(默认),则内部的 coords 和 data 数组也会被复制。设置为 False 则只进行浅复制。

True
源代码在 sparse/numba_backend/_compressed/compressed.py
189
190
191
192
193
194
195
196
197
198
def copy(self, deep=True):
    """Return a copy of the array.

    Parameters
    ----------
    deep : boolean, optional
        If True (default), the internal coords and data arrays are also
        copied. Set to ``False`` to only make a shallow copy.
    """
    return _copy.deepcopy(self) if deep else _copy.copy(self)

from_numpy(x, compressed_axes=None, fill_value=None, idx_dtype=None) 类方法

源代码在 sparse/numba_backend/_compressed/compressed.py
200
201
202
203
@classmethod
def from_numpy(cls, x, compressed_axes=None, fill_value=None, idx_dtype=None):
    coo = COO.from_numpy(x, fill_value=fill_value, idx_dtype=idx_dtype)
    return cls.from_coo(coo, compressed_axes, idx_dtype)

from_coo(x, compressed_axes=None, idx_dtype=None) 类方法

源代码在 sparse/numba_backend/_compressed/compressed.py
205
206
207
208
@classmethod
def from_coo(cls, x, compressed_axes=None, idx_dtype=None):
    (arg, shape, compressed_axes, fill_value) = _from_coo(x, compressed_axes, idx_dtype)
    return cls(arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value)

from_scipy_sparse(x, /, *, fill_value=None) 类方法

源代码在 sparse/numba_backend/_compressed/compressed.py
210
211
212
213
214
215
216
217
218
219
@classmethod
def from_scipy_sparse(cls, x, /, *, fill_value=None):
    is_csc = x.format == "csc"
    ca = (1,) if is_csc else (0,)
    if not is_csc:
        x = x.asformat("csr")
    if not x.has_canonical_format:
        x.eliminate_zeros()
        x.sum_duplicates()
    return cls((x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=ca, fill_value=fill_value)

from_iter(x, shape=None, compressed_axes=None, fill_value=None, idx_dtype=None) 类方法

源代码在 sparse/numba_backend/_compressed/compressed.py
221
222
223
224
225
226
227
@classmethod
def from_iter(cls, x, shape=None, compressed_axes=None, fill_value=None, idx_dtype=None):
    return cls.from_coo(
        COO.from_iter(x, shape, fill_value),
        compressed_axes,
        idx_dtype,
    )

change_compressed_axes(new_compressed_axes)

返回一个具有指定压缩轴的新数组。此操作类似于将 scipy.sparse.csc_matrix 转换为 scipy.sparse.csr_matrix。

返回

类型 描述
GCXS

输入数组的新实例,沿指定维度进行压缩。

源代码在 sparse/numba_backend/_compressed/compressed.py
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def change_compressed_axes(self, new_compressed_axes):
    """
    Returns a new array with specified compressed axes. This operation is similar to converting
    a scipy.sparse.csc_matrix to a scipy.sparse.csr_matrix.

    Returns
    -------
    GCXS
        A new instance of the input array with compression along the specified dimensions.
    """
    if new_compressed_axes == self.compressed_axes:
        return self

    if self.ndim == 1:
        raise NotImplementedError("no axes to compress for 1d array")

    new_compressed_axes = tuple(
        normalize_axis(new_compressed_axes[i], self.ndim) for i in range(len(new_compressed_axes))
    )

    if new_compressed_axes == self.compressed_axes:
        return self

    if len(new_compressed_axes) >= len(self.shape):
        raise ValueError("cannot compress all axes")
    if len(set(new_compressed_axes)) != len(new_compressed_axes):
        raise ValueError("repeated axis in compressed_axes")

    arg = _transpose(self, self.shape, np.arange(self.ndim), new_compressed_axes)

    return GCXS(
        arg,
        shape=self.shape,
        compressed_axes=new_compressed_axes,
        fill_value=self.fill_value,
    )

tocoo()

将此 sparse.GCXS 数组转换为 sparse.COO

返回

类型 描述
COO

转换后的 COO 数组。

源代码在 sparse/numba_backend/_compressed/compressed.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def tocoo(self):
    """
    Convert this [`sparse.GCXS`][] array to a [`sparse.COO`][].

    Returns
    -------
    sparse.COO
        The converted COO array.
    """
    if self.ndim == 0:
        return COO(
            np.array([]),
            self.data,
            shape=self.shape,
            fill_value=self.fill_value,
        )
    if self.ndim == 1:
        return COO(
            self.indices[None, :],
            self.data,
            shape=self.shape,
            fill_value=self.fill_value,
        )
    uncompressed = uncompress_dimension(self.indptr)
    coords = np.vstack((uncompressed, self.indices))
    order = np.argsort(self._axis_order)
    return (
        COO(
            coords,
            self.data,
            shape=self._compressed_shape,
            fill_value=self.fill_value,
        )
        .reshape(self._reordered_shape)
        .transpose(order)
    )

todense()

将此 sparse.GCXS 数组转换为密集的 numpy.ndarray。请注意,如果 sparse.GCXS 对象的 shape 较大,这可能会占用大量内存。

返回

类型 描述
ndarray

转换后的密集数组。

另请参阅
源代码在 sparse/numba_backend/_compressed/compressed.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def todense(self):
    """
    Convert this [`sparse.GCXS`][] array to a dense [`numpy.ndarray`][]. Note that
    this may take a large amount of memory if the [`sparse.GCXS`][] object's `shape`
    is large.

    Returns
    -------
    numpy.ndarray
        The converted dense array.

    See Also
    --------
    - [`sparse.DOK.todense`][] : Equivalent [`sparse.DOK`][] array method.
    - [`sparse.COO.todense`][] : Equivalent [`sparse.COO`][] array method.
    - [`scipy.sparse.coo_matrix.todense`][] : Equivalent Scipy method.

    """
    if self.compressed_axes is None:
        out = np.full(self.shape, self.fill_value, self.dtype)
        if len(self.indices) != 0:
            out[self.indices] = self.data
        else:
            if len(self.data) != 0:
                out[()] = self.data[0]
        return out
    return self.tocoo().todense()

todok()

源代码在 sparse/numba_backend/_compressed/compressed.py
490
491
492
493
def todok(self):
    from .. import DOK

    return DOK.from_coo(self.tocoo())  # probably a temporary solution

to_scipy_sparse(accept_fv=None)

将此 sparse.GCXS 对象转换为 scipy.sparse.csr_matrixscipy.sparse.csc_matrix

参数

名称 类型 描述 默认值
accept_fv 标量或标量列表

接受的填充值列表。默认只接受零。

返回

类型 描述
csr_matrixcsc_matrix

转换后的 Scipy 稀疏矩阵。

引发

类型 描述
ValueError

如果数组不是二维的。

ValueError

如果所有数组都没有零填充值。

源代码在 sparse/numba_backend/_compressed/compressed.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def to_scipy_sparse(self, accept_fv=None):
    """
    Converts this [`sparse.GCXS`][] object into a [`scipy.sparse.csr_matrix`][] or [`scipy.sparse.csc_matrix`][].

    Parameters
    ----------
    accept_fv : scalar or list of scalar, optional
        The list of accepted fill-values. The default accepts only zero.

    Returns
    -------
    scipy.sparse.csr_matrix or scipy.sparse.csc_matrix
        The converted Scipy sparse matrix.

    Raises
    ------
    ValueError
        If the array is not two-dimensional.
    ValueError
        If all the array doesn't zero fill-values.
    """
    import scipy.sparse

    check_fill_value(self, accept_fv=accept_fv)
    if self.ndim != 2:
        raise ValueError("Can only convert a 2-dimensional array to a Scipy sparse matrix.")

    if 0 in self.compressed_axes:
        return scipy.sparse.csr_matrix((self.data, self.indices, self.indptr), shape=self.shape)

    return scipy.sparse.csc_matrix((self.data, self.indices, self.indptr), shape=self.shape)

asformat(format, **kwargs)

将此稀疏数组转换为给定格式。

参数

名称 类型 描述 默认值
format str

格式字符串。

必需

返回

名称 类型 描述
out SparseArray

转换后的数组。

引发

类型 描述
NotImplementedError

如果不支持该格式。

源代码在 sparse/numba_backend/_compressed/compressed.py
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def asformat(self, format, **kwargs):
    """
    Convert this sparse array to a given format.
    Parameters
    ----------
    format : str
        A format string.

    Returns
    -------
    out : SparseArray
        The converted array.

    Raises
    ------
    NotImplementedError
        If the format isn't supported.
    """
    from .._utils import convert_format

    format = convert_format(format)
    ret = None

    if format == "coo":
        ret = self.tocoo()
    elif format == "dok":
        ret = self.todok()
    elif format == "csr":
        ret = CSR(self)
    elif format == "csc":
        ret = CSC(self)
    elif format == "gcxs":
        compressed_axes = kwargs.pop("compressed_axes", self.compressed_axes)
        return self.change_compressed_axes(compressed_axes)

    if len(kwargs) != 0:
        raise TypeError(f"Invalid keyword arguments provided: {kwargs}")

    if ret is None:
        raise NotImplementedError(f"The given format is not supported: {format}")

    return ret

maybe_densify(max_size=1000, min_density=0.25)

如果成本不高,则将此 sparse.GCXS 数组转换为 numpy.ndarray

参数

名称 类型 描述 默认值
max_size int

输出中的最大元素数量

1000
min_density float

输出的最小密度

0.25

返回

类型 描述
ndarray

密集数组。

另请参阅

引发

类型 描述
ValueError

如果返回的数组太大。

源代码在 sparse/numba_backend/_compressed/compressed.py
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
def maybe_densify(self, max_size=1000, min_density=0.25):
    """
    Converts this [`sparse.GCXS`][] array to a [`numpy.ndarray`][] if not too
    costly.

    Parameters
    ----------
    max_size : int
        Maximum number of elements in output
    min_density : float
        Minimum density of output

    Returns
    -------
    numpy.ndarray
        The dense array.

    See Also
    --------
    - [sparse.GCXS.todense][]: Converts to Numpy function without checking the cost.
    - [sparse.COO.maybe_densify][]: The equivalent COO function.

    Raises
    -------
    ValueError
        If the returned array would be too large.
    """

    if self.size > max_size and self.density < min_density:
        raise ValueError("Operation would require converting large sparse array to dense")

    return self.todense()

flatten(order='C')

返回一个新 sparse.GCXS 数组,它是此数组的扁平化版本。

返回

类型 描述
GCXS

扁平化输出数组。

备注

提供 order 参数仅为了与 Numpy 兼容,实际上并不受支持。

源代码在 sparse/numba_backend/_compressed/compressed.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
def flatten(self, order="C"):
    """
    Returns a new [`sparse.GCXS`][] array that is a flattened version of this array.

    Returns
    -------
    GCXS
        The flattened output array.

    Notes
    -----
    The `order` parameter is provided just for compatibility with
    Numpy and isn't actually supported.
    """
    if order not in {"C", None}:
        raise NotImplementedError("The `order` parameter is not supported.")

    return self.reshape(-1)

reshape(shape, order='C', compressed_axes=None)

返回一个新 sparse.GCXS 数组,它是此数组的重塑版本。

参数

名称 类型 描述 默认值
shape tuple[int]

所需输出数组的形状。

必需
compressed_axes Iterable[int]

用于存储数组的压缩轴。默认情况下查找最有效的存储方式。

返回

类型 描述
GCXS

重塑后的输出数组。

另请参阅
备注

提供 order 参数仅为了与 Numpy 兼容,实际上并不受支持。

源代码在 sparse/numba_backend/_compressed/compressed.py
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
def reshape(self, shape, order="C", compressed_axes=None):
    """
    Returns a new [`sparse.GCXS`][] array that is a reshaped version of this array.

    Parameters
    ----------
    shape : tuple[int]
        The desired shape of the output array.
    compressed_axes : Iterable[int], optional
        The axes to compress to store the array. Finds the most efficient storage
        by default.

    Returns
    -------
    GCXS
        The reshaped output array.

    See Also
    --------
    - [`numpy.ndarray.reshape`][] : The equivalent Numpy function.
    - [sparse.COO.reshape][] : The equivalent COO function.

    Notes
    -----
    The `order` parameter is provided just for compatibility with
    Numpy and isn't actually supported.

    """
    shape = tuple(shape) if isinstance(shape, Iterable) else (shape,)
    if order not in {"C", None}:
        raise NotImplementedError("The 'order' parameter is not supported")
    if any(d == -1 for d in shape):
        extra = int(self.size / np.prod([d for d in shape if d != -1]))
        shape = tuple([d if d != -1 else extra for d in shape])

    if self.shape == shape:
        return self

    if self.size != reduce(operator.mul, shape, 1):
        raise ValueError(f"cannot reshape array of size {self.size} into shape {shape}")
    if len(shape) == 0:
        return self.tocoo().reshape(shape).asformat("gcxs")

    if compressed_axes is None:
        if len(shape) == self.ndim:
            compressed_axes = self.compressed_axes
        elif len(shape) == 1:
            compressed_axes = None
        else:
            compressed_axes = (np.argmin(shape),)

    if self.ndim == 1:
        arg = _1d_reshape(self, shape, compressed_axes)
    else:
        arg = _transpose(self, shape, np.arange(self.ndim), compressed_axes)
    return GCXS(
        arg,
        shape=tuple(shape),
        compressed_axes=compressed_axes,
        fill_value=self.fill_value,
    )

transpose(axes=None, compressed_axes=None)

返回一个轴顺序已交换的新数组。

参数

名称 类型 描述 默认值
axes Iterable[int]

与前一个轴顺序相比的新轴顺序。默认情况下反转轴。

compressed_axes Iterable[int]

用于存储数组的压缩轴。默认情况下查找最有效的存储方式。

返回

类型 描述
GCXS

轴以所需顺序排列的新数组。

另请参阅
源代码在 sparse/numba_backend/_compressed/compressed.py
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def transpose(self, axes=None, compressed_axes=None):
    """
    Returns a new array which has the order of the axes switched.

    Parameters
    ----------
    axes : Iterable[int], optional
        The new order of the axes compared to the previous one. Reverses the axes
        by default.
    compressed_axes : Iterable[int], optional
        The axes to compress to store the array. Finds the most efficient storage
        by default.

    Returns
    -------
    GCXS
        The new array with the axes in the desired order.

    See Also
    --------
    - [`sparse.GCXS.T`][] : A quick property to reverse the order of the axes.
    - [`numpy.ndarray.transpose`][] : Numpy equivalent function.
    """
    if axes is None:
        axes = list(reversed(range(self.ndim)))

    # Normalize all axes indices to positive values
    axes = normalize_axis(axes, self.ndim)

    if len(np.unique(axes)) < len(axes):
        raise ValueError("repeated axis in transpose")

    if not len(axes) == self.ndim:
        raise ValueError("axes don't match array")

    axes = tuple(axes)

    if axes == tuple(range(self.ndim)):
        return self

    if self.ndim == 2:
        return self._2d_transpose()

    shape = tuple(self.shape[ax] for ax in axes)

    if compressed_axes is None:
        compressed_axes = (np.argmin(shape),)
    arg = _transpose(self, shape, axes, compressed_axes, transpose=True)
    return GCXS(
        arg,
        shape=shape,
        compressed_axes=compressed_axes,
        fill_value=self.fill_value,
    )

dot(other)

sparse.GCXS 执行 x.dot(y) 的等效操作。

参数

名称 类型 描述 默认值
other 联合[GCXS, COO, ndarray, spmatrix]

点积操作的第二个操作数。

必需

返回

类型 描述
{GCXS, ndarray}

点积的结果。如果结果是密集的,则返回密集数组,否则返回稀疏数组。

引发

类型 描述
ValueError

如果所有参数都没有零填充值。

另请参阅
源代码在 sparse/numba_backend/_compressed/compressed.py
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
def dot(self, other):
    """
    Performs the equivalent of `x.dot(y)` for [`sparse.GCXS`][].

    Parameters
    ----------
    other : Union[GCXS, COO, numpy.ndarray, scipy.sparse.spmatrix]
        The second operand of the dot product operation.

    Returns
    -------
    {GCXS, numpy.ndarray}
        The result of the dot product. If the result turns out to be dense,
        then a dense array is returned, otherwise, a sparse array.

    Raises
    ------
    ValueError
        If all arguments don't have zero fill-values.

    See Also
    --------
    - [`sparse.dot`][] : Equivalent function for two arguments.
    - [`numpy.dot`][] : Numpy equivalent function.
    - [`scipy.sparse.coo_matrix.dot`][] : Scipy equivalent function.
    """
    from .._common import dot

    return dot(self, other)

isinf()

源代码在 sparse/numba_backend/_compressed/compressed.py
844
845
def isinf(self):
    return self.tocoo().isinf().asformat("gcxs", compressed_axes=self.compressed_axes)

isnan()

源代码在 sparse/numba_backend/_compressed/compressed.py
847
848
def isnan(self):
    return self.tocoo().isnan().asformat("gcxs", compressed_axes=self.compressed_axes)