跳到内容

nanmin

沿给定轴取最小值,跳过 NaN 值。默认使用所有轴。

参数

名称 类型 描述 默认值
x SparseArray

要执行约减操作的数组。

必需
axis 联合[int, Iterable[int]]

取最小值的轴。默认使用所有轴。

None
keepdims bool_

是否保留原始数组的维度。

False
dtype dtype

输出数组的数据类型。

None

返回值

类型 描述
COO

归约后的稀疏输出数组。

另请参阅
源代码位于 sparse/numba_backend/_coo/common.py
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def nanmin(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Minimize along the given axes, skipping ``NaN`` values. Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to minimize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    - [`sparse.COO.min`][] : Function without `NaN` skipping.
    - [`numpy.nanmin`][] : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x, name="nanmin")

    ar = x.reduce(np.fmin, axis=axis, keepdims=keepdims, dtype=dtype)

    if (isscalar(ar) and np.isnan(ar)) or np.isnan(ar.data).any():
        warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=1)

    return ar